(Нет отзывов)
11 страниц
2019-08-31

Непараметрические методы

В наличии
549 ₽

Введение Использование классических распределений случайных величин обычно называют "параметрической статистикой" - мы делаем предположение о том, что интересующая нас СВ (дискретная или непрерывная) имеет вероятности, вычисляемые по некоторым формулам или алгоритмам. Однако не всегда у нас имеются основания для этого. Причин тому чаще всего две: • некоторые случайные величины просто не имеют количественного описания, обоснованных единиц измерения (уровень знаний, качество продукции и т. п.); • наблюдения над величинами возможны, но их количество слишком мало для проверки предположения (гипотезы) о типе распределения. В настоящее время в прикладной статистике все большей популярностью пользуются методы т. н. непараметрической статистики — когда вопрос о принадлежности распределения вероятностей данной величины к тому или иному классу вообще не подымается, но конечно же — задача оценки самой СВ, получения информации о ней, остается. Одним из основных понятий непараметрической статистики является понятие ШКАЛЫ или процедуры шкалирования значений СВ. По своему смыслу процедура шкалирования суть решение вопроса о "единицах измерения" СВ. Принято использовать четыре вида шкал. Nom. Первой из них рассмотрим НОМИНАЛЬНУЮ шкалу — применяемую к тем величинам, которые не имеют природной единицы измерения. Если некоторая величина может принимать на своей номинальной шкале значения X, Y или Z, то справедливыми считаются только выражения типа: (X#Y), (X#Z), (X=Z), а выражения типа (X>Y), (X или <). Иногда говорят о рангах значений таких величин. Int & Rel. Еще два способа шкалирования используются для СВ, имеющих натуральные размерности — это ИНТЕРВАЛЬНАЯ и ОТНОСИТЕЛЬНАЯ шкала. Для таких величин, кроме отношений равенства и предпочтения, допустимы операции сравнения - т. е. все четыре действия арифметики. Главная особенность таких шкал заключается в том, что разность двух значений на шкале (36 и 12) имеет один смысл для любого места шкалы (28 и 4). Различие между интервальной шкалой и относительной — только в понятии нуля — на интервальной шкале 0 Кг веса означает отсутствие веса, а на относительной шкале температур 0 градусов не означает отсутствие теплоты — поскольку возможны температуры ниже 0 градусов (Цельсия). Можно теперь заметить еще одно преимущество, которое мы получаем при использовании методов непараметрической статистики — если мы сталкиваемся со случайной величиной непрерывной природы, то использование интервальной или относительной шкалы позволит нам иметь дело не со случайными величинами, а со случайными событиями — типа "вероятность того, что вес продукции находится в интервале 17 Кг". Поэтому можно предложить единый подход к описанию всех показателей функционирования сложной системы — описание на уровне простых случайных событий (с вероятностью P(X) может произойти событие X). При том под событием придется понимать то, что случайная величина займет одно из допустимых для нее положений на шкале Nom, Ord, Int или Rel. Конечно — такой, “микроскопический” подход резко увеличивает объем информации, необходимой для системного анализа. Частично этот недостаток смягчается при использовании компьютерных методов системного анализа, но более важно другое — преимущество на начальных этапах анализа, когда решаются вопросы дезинтеграции большой системы (выделение отдельных ее элементов) и последующей ее интеграции для разработки стратегии управления системой.

Введение 3 Краткий обзор непараметрических процедур 6 Какой метод использовать 8 Заключение 10 Список литературы 11

1. Башет К.В. Статистика коммерческой деятельности. - М.: Финансы и статистика, 1996 г. 2. Елесеева М.А. Общая теория статистики. - М.: Статистика, 1998 г. 3. Статистика: Курс лекций /Под ред. В.Г. Ионина. - Новосибирс: НГАЭУ, 1999. 4. Харченко Л.П. Статистика. - М.: ИНФРА, 1997 г. 5. Гаек Я., Шидак З. Теория ранговых критериев 6. Генри Н. Лазарсфельд П., Математические методы в социальных науках 7. Кэндэл М. Ранговые корреляции 8. Тюрин Ю.Н. Непараметрические методы статистики 9. Рунион Р. Справочник по непараметрической статистике 10. Холлендер М., Вулф Д. Непараметрические методы статистики 11. Дейвисон М. Многомерное шкалирование

Список рефератов по предмету статистика и статистическое наблюдение