4. Области применения экспертных систем.
Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.
а) Медицинская диагностика.
Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины.
б) Прогнозирование.
Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Программная система Завоевание Уолл-стрита может проанализировать конъюнктуру рынка и с помощью статистических методов алгоритмов разработать для вас план капиталовложений на перспективу. Она не относится к числу систем, основанных на знаниях, поскольку использует процедуры и алгоритмы традиционного программирования. Хотя пока еще отсутствуют ЭС, которые способны за счет своей информации о конъюнктуре рынка помочь вам увеличить капитал, прогнозирующие системы уже сегодня могут предсказывать погоду, урожайность и поток пассажиров. Даже на персональном компьютере, установив простую систему, основанную на знаниях, вы можете получить местный прогноз погоды.
в) Планирование.
Планирующие системы предназначены для достижения конкретных целей при решении задач с большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов. Экспертная система XCON, созданная фирмой DEC, служит для определения или изменения конфигурации компьютерных систем типа VAX и в соответствии с требованиями покупателя. Фирма DEC разрабатывает более мощную систему XSEL, включающую базу знаний системы XCON, с целью оказания помощи покупателям при выборе вычислительных систем с нужной конфигурацией. В отличие от XCON система XSEL является интерактивной.
г) Интерпретация.
Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.
д) Контроль и управление.
Системы, основанные на знаниях, могут применятся в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.
е) Диагностика неисправностей в мханических и электрических устройствах.
В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.
ж) Обучение.
Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д.Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т.Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.
Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования. Система, обеспечивающая сохранность жилища, может следить за окружающей обстановкой, распознавать происходящие события (например, открылось окно), выдавать прогноз (вор-взломщик намеревается проникнуть в дом) и составлять план действий (вызвать полицию).
СОДЕРЖАНИЕ
Введение 3
1. Определение экспертных систем. Назначение экспертных систем. 5
2. Отличие ЭС от других программных продуктов. 8
3. Отличительные особенности. Экспертные системы первого и второго поколения. 10
4. Области применения экспертных систем. 12
5. Критерий использования ЭС для решения задач. 16
6. Ограничения в применение экспертных систем.. 18
7. Преимущества ЭС перед человеком - экспертом. 20
.8. История развития экспертных систем. 21
8.1. Основные линии развития ЭС. 21
8.2. Проблемы и перспективы ЭС. 23
Заключение. 26
Литература. 27
Введение
Искусственный интеллект (ИИ) (англ. Artificial intelligence, AI) раздел информатики, занимающийся формализацией задач, напоминающих задачи, выполняемые человеком. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи. В некотором роде обособленно стоят задачи распознавания образов, которые традиционно включают в круг задач искусственного интеллекта.
Искусственный интеллект очень молодая область исследований, старт которой был дан в 1956 году. Её исторический путь напоминает синусоиду, каждый «взлёт» которой инициировался какой-либо новой идеей. В настоящий момент её развитие находится на «спаде», уступая место применению уже достигнутых результатов в других областях науки, промышленности, бизнесе и даже повседневной жизни.
Экспертные системы (ЭС) возникли как значительный практический результат в применении и развитии методов искусственного интеллекта.
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод (автоматический перевод с одного естественного языка на другой), распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.
ЭС это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности рабты и повышению квалификации специалистов.
Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличии от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.
При создании ЭС возникает ряд затруднений. Это прежде всего связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят машиной. Но эти страхи не обоснованы, т. к. ЭС не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также ЭС неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.
Экспертная система состоит из базы знаний (части системы, в которой содержатся факты), подсистемы вывода (множества правил, по которым осуществляется решение задачи), подсистемы объяснения, подсистемы приобретения знаний и диалогового процессора .
При построении подсистем вывода используют методы решения задач искусственного интеллекта.
1. Определение экспертных систем. Назначение экспертных систем.
Единого ответа на вопрос чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки. Обычно эти определения сводятся к следующим:
ИИ изучает методы решения задач, которые требуют человеческого разумения. Исторически первый подход. Грубо говоря, речь идёт о том, чтобы научить ИИ решать тесты интеллекта. Это предполагает развитие способов решения задач по аналогии, методов дедукции и индукции, накопление базовых знаний и умение их использовать.
ИИ изучает методы решения задач, для которых не существует способов решения или они неприемлемы (из-за ограничений по времени, памяти и т.д.). Благодаря такому определению, интеллектуальные алгоритмы часто привлекаются для решения NP-полных задач, например, задачи коммивояжёра.
ИИ занимается моделированием человеческой высшей нервной деятельности.
ИИ это системы, способные оперировать со знаниями, а самое главное обучаться. В первую очередь речь идёт о том, чтобы признать класс экспертных систем (называемых так потому, что они способны заменить «на посту» людей-экспертов) интеллектуальными системами.
Последний подход, развиваемый с начала 1990-х годов называется агентно-ориентированным подходом. Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются алгоритмы поиска и принятия решений.
Экспертные системы (ЭС)- это яркое и быстро прогрессирующее направление в области искусственного интеллекта (ИИ). Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или по крайней мере, такие попытки не предпринимались бы.
ЭС- это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.
ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых с потолка, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.
Главное достоинство ЭС возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.
Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на ЭС, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов.
На современном этапе развития ИИ именно экспертные системы самый большой коммерческий успех этого научного направления.
2. Отличие ЭС от других программных продуктов.
Основными отличиями ЭС от других программных продуктов являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи. Поэтому применение алгоритма обработки знаний может привести к получению такого результата при решении конкретной задачи, который не был предусмотрен. Более того, алгоритм обработки знаний заранее неизвестен и строится по ходу решения задачи на основании эвристических правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов (см.. рис.1).
рис.1
Качество ЭС определяется размером и качеством базы знаний (правил или эвристик). Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов (рис.2). Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.
В любой момент времени в системе существуют три типа знаний:
- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.
- Структурированные динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.
- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.
Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
рис.2 Схема работы ЭС.
3. Отличительные особенности. Экспертные системы первого и второго поколения.
1. Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения конфигурации систем ЭВМ, не может ставить медицинские диагнозы.
2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульмонологии путем замены базы знаний, используемой с тем же самым механизмом вывода.
3. Наиболее подходящая область применения- решение задач дедуктивным методом. Например, правила или эвристики выражаются в виде пар посылок и заключений типа если-то.
1. http://www.klerk.ru
2. http://www.amebas.ru/
3. http://www.diabet.ru
4. http://www.philosophy.ru
5. http://lnfm1.sai.msu.ru
6. http://nit.miem.edu.ru
7. http://www.computerra.ru
8. http://neural.narod.ru
9. http://biblioteka.org.ua
10. http://itc.ua
11. http://evolutsia.com
12. http://khpi-iip.mipk.kharkiv.edu
13. http://lii.newmail.ru
14. http://ru.wikipedia.org
15. http://www.galactic.org.ua
16. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы М.: Финансы и статистика, 2003. (учебник для студентов, обучающихся по информационным специальностям).
17. Ежов А.А., Шумский С.А. Нейрокомпьютинг и его применения в экономике и бизнесе. - М.: МИФИ, 1998
18. Девятков В.В. Системы искусственного интеллекта. - М.: Издательство МГТУ им. Н.Э. Баумана, 2001
19. Горбань А.Н., Дунин-Барковский В.Л., Кирдин А.Н. и др., Нейроинформатика. - Новосибирск: Наука, 1998
20. Горбань А.Н., Россиев Д.А. - Новосибирск: Наука,1996.
21. Нейронные сети. SATISTICA Neural Networks - М.: Горячая линия Телеком, 2000.